If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+8x-780=0
a = 4; b = 8; c = -780;
Δ = b2-4ac
Δ = 82-4·4·(-780)
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-112}{2*4}=\frac{-120}{8} =-15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+112}{2*4}=\frac{104}{8} =13 $
| 3/15=x/60 | | w÷5=10 | | y/2=y+3/8 | | 3+2u=-7 | | 14.12+x=21.7 | | 5(2x+3)-2x=20+3x-5+5x | | r-3/4=-2/5 | | (2,-2);m=-4 | | 7c+5=-37 | | (3,1);m=2 | | -8p=-104 | | 5x-4(x+2)=3x-14 | | 2x/5+6=x-3 | | -7t=-84 | | 5-(x-3)=3x | | 3x+5-x=12+5x+8 | | (1/4)x-5=(1/6)x+1 | | 2(x+10)=38+8x | | 1/4x-5=1/6x+1 | | 5+w=48 | | 3x+22=2x+40 | | 3(5+3×)-6×=2(4-3x)-7 | | -3z=60 | | 14x=4x−5 | | (n+8)+(n=12) | | 2(2x-3)+3x=x-21 | | -3a+-a=8 | | -3a+-a=83 | | 4x+8x+21=28x+12-3 | | 48-(3c-4)=4(c+7)+c | | 3a+-a=8 | | 7x+12=2x-18 |